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Why many different bespoke cellular responses exist for
physical space?

Grid cell Object-vector cell Border cell Place cell



Why many different bespoke cellular responses exist in
different tasks?
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Why are some neural representations

entangled and others not?

Main contributions:

O From biological aspect: This paper shows the most efficient biological
representation puts different factors in different neurons.

O From machine aspect: This paper builds machines that learn disentangling
representations with simple biological constraints of nonnegativity and
minimising neural activity energy.
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Linear disentangling with biological constraints

Linear model Biological constraints

z=Me+b,
Stimuli: K with k independent components;
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with =O0forall =1, ...,

Neural representation: v' Minimising neural activity energy:

Weights: nxk min ( || ||
Bias: n
_________________________ L e e e e e e e e e e e e e e e e e e e e e =
—0.6 0 8 —0.6 1.4
==alie] v [ax] + o ==a i) rer [0+ 1]
ZVGT(ZJ‘) = 202 Z Var(z;) = 20*
i J
E||z||* = 202 E||z||?> = 202 + 2a21.4
Neuron 2 Neuron 2

Make non-negative Minimise activity energy

—

>
Neuron 1 Neuron 1

10




Disentangling in machines

Regularizers as constraints

L= £n0nneg + Eactivity + ﬁweight + [fprediction
\_ " ~ A,—/

Biological constraints Functional constraints
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Disentangling in machines

Regularizers as constraints

| = — —
L= £_110£ne_g|+ Eactivity T ﬁweight T

iV

Biological constraints

Enonneg — Bnonneg Zz max(—ai, O)

denotes single neural activity

['prediction
N——

Functional constraints
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Disentangling in machines

Regularizers as constraints

I~ = = I~ 7
L= ﬁnonne_g|+|_£_act_ivi_ty|"|— ﬁweight + E'prediction

Biological fonstraints Functional constraints

Enonneg — Bnonneg Zz maX(_ai' O)

denotes single neural activity

v
['activity — 5activity Zl Hal | ‘2

denotes neural activity in s layer
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Disentangling in machines

Regularizers as constraints

== =1 17=7"1 17"
£ = \Lnonnggy  Lactivien T Lweighy

Biological fonstraints

['prediction
N——

Functional constraints

Enonneg — Bnonneg Zz maX(_ai- O) Eweight — ﬁweight Zl HVVZHZ

denotes single neural activity denotes weight in s layer

v
['activity — 5activity Zl Hal | ‘2

denotes neural activity in s layer
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Disentangling in machines

Disentangling metric

Mutual Information Ratio (MIR)

max s (L, r)

Zf Ly,

T =

~ :measures the mutual information
between neurons and factors

:the number of (active) neurons
:the number of factors
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Disentangling in machines

L= ﬁnonneg =+ ['activity + Eweight =+ Eprediction
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Disentangling results on shallow linear networks
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Disentangling in machines
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Disentangling in machines

MIR
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Disentangling results on deep non-linear networks
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Disentangling in Brain

A Real grid cells B Real OVCS
Cell #1 Lell e
Internal represe-ntation
Cell #4 00000000
Cell #2 &
000 000 000
Space Object Action

Modules of distinct cell types form with nonnegativity and factorised tasks

Tasks setting: If objects appear in different places in different
1. Rodents must know where they are in space contexts, tasks can be factorized into:
2. Rodents must also approach one of multiple 1. Where am I in allocentric spatial coordinates?

objects 2. Where am I in object-centric coordinates?
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Disentangling in Brain
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Modules of distinct cell types form with nonnegativity and factorised tasks
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Disentangling in Brain

RelLu
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Answer to the questions

Why many different bespoke cellular responses exist for physical space?

)

Grid cell Object-vector cell Border cell Place cell
Why many different bespoke cellular responses exist in different tasks?
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Answer to the questions

Why many different bespoke cellular responses exist for physical space?

Grid cell Object-vector cell Border cell Place cell
Why many different bespoke cellular responses exist in different tasks?

Since space, boundaries, and objects appear in a factorised form, and so

are optimally represented by different neural populations for each factor.
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Take-home message

Scientific question:
» Why are some neural representations entangled and others not?

Technical question:

» How can we build an Al model that is able to learn disentangled
representations?

Main contributions:

» From biological aspect: This paper shows the most efficient biological
representation puts different factors in different neurons.

» From machine aspect: This paper builds machines that learn disentangling
representations with simple biological constraints of nonnegativity and
minimising activity energy.
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Thanks for your attention!



